Quantifying the carbon export potential of the marine microbial community: coupling of biogenic rates and fluxes with genomics at the ocean surface

SCIENCE GOALS

- I. Examination of the marine microbial community composition and its influence on Net Community Productivity (NCP)
- II. Determine the extent to which members of the marine microbial community are coupled in space and time
- III. Assess the physiological status of phytoplankton and bacteria and its influence on NCP

TEAM MEMBERS

Adrian Marchetti (PI) – UNC
Scott Gifford (co-PI) – UNC
Nicolas Cassar (co-PI) – Duke
Weida Gong (Grad Student) – UNC
Laura Fisch (Grad student) - UNC

Quantifying the carbon export potential of the marine microbial community: coupling of biogenic rates and fluxes with genomics at the ocean surface

FIELD WORK

Both Ships

 Net community production via Equilibrator Inlet Mass Spectrometry (EIMS) measurements of O₂/Ar

Process Ship

- Size-fractionated new and regenerated production via stable isotope incubations
- Community and bacterial respiration rates via O₂ drawdown
- Plankton community characterization via 18S and 16S rDNA amplicon sequencing
- Quantitative metagenomics and metatranscriptomics via high-throughput sequencing of DNA and RNA

