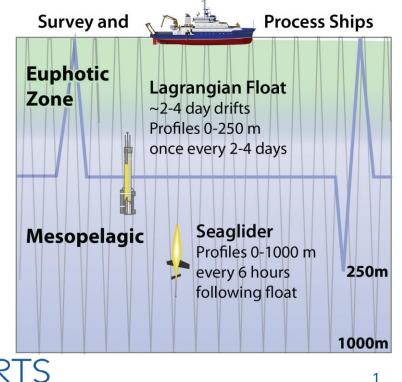
Autonomous Investigation of Export Pathways from Hours to Seasons

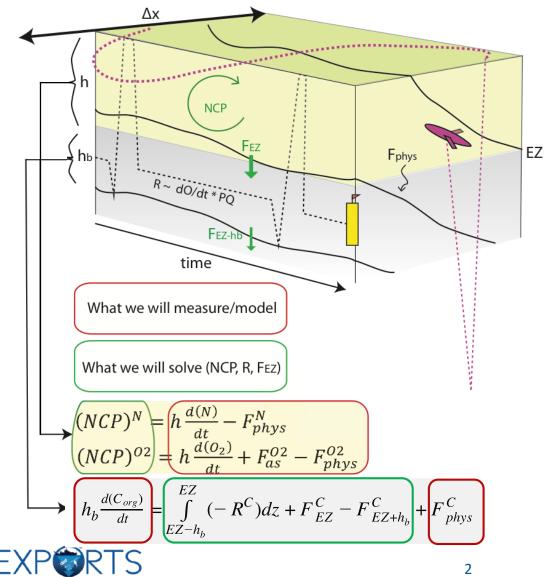
SCIENCE GOALS


- Identify dominant export pathways from euphotic to twilight zone.
- Quantify carbon fluxes and relate to productivity, ecosystem state and physical forcing.
- Sample broad spatial and temporal span to capture diverse states.

TECHNICAL GOALS

- Using multi-month, *in situ* autonomous measurements, satellite remote sensing and models:
 - Qualitatively identify export pathways
 - Quantitatively assess export fluxes

TEAM MEMBERS


Craig Lee (APL-UW) – physics, gliders, overall management Eric D'Asaro (APL-UW) – physics, Lagrangian float, zooplankton Mary Jane Perry (self) – biology, optics, proxy development David Nicholson (WHOI) – biogeochemical budgets Melissa Omand (URI) – particles, optical sediment trap, SnoCam Andrew Thompson (CalTech) – physics, submesoscale analyses

Autonomous Investigation of Export Pathways from Hours to Seasons

- One Lagrangian Float
 - T, S, O₂ ,NO₃, Chl, bbp
 Optical sediment trap
- One Seaglider follows float
 - T, S, O₂, PAR, Chl, b_{bp}
 Acoustic backscatter
 (zooplankton)
- 4-6 months, spanning EXPORTS cruises.
- Deploy from Canadian Line-P or OOI cruise.
- Provide:
 - Temporal context
 - Targeting for ship-based efforts
 - Lagrangian reference frame
 - Sensor-based proxies
 - Additional states
- Possibility of additional gliders and/or BioArgo floats (EXPORTS, OOI)

Proxy Development for Autonomous Sensors Ship measurements →

map to CTD/flow-through/hull sensors ->

map to autonomous sensors

'Parameter'	Ship Measurement	Simple Sensor	Autonomous Sensor
Phytoplankton stock	Chl, HPLC, a(676)	Chl F	Chl F
Plankton community composition	FCM, imaging taxa (1º), HPLC (2º)	Chl F/b _{bp}	Chl F/b _{bp}
POC	Chemical POC	C _p , b _{bp}	C _p , b _{bp}
Aggregates	LISST, UVP	Optical spikes	Optical spikes
Zooplankton stock	Net tows	Hull-based acoustics	ADCP backscatter